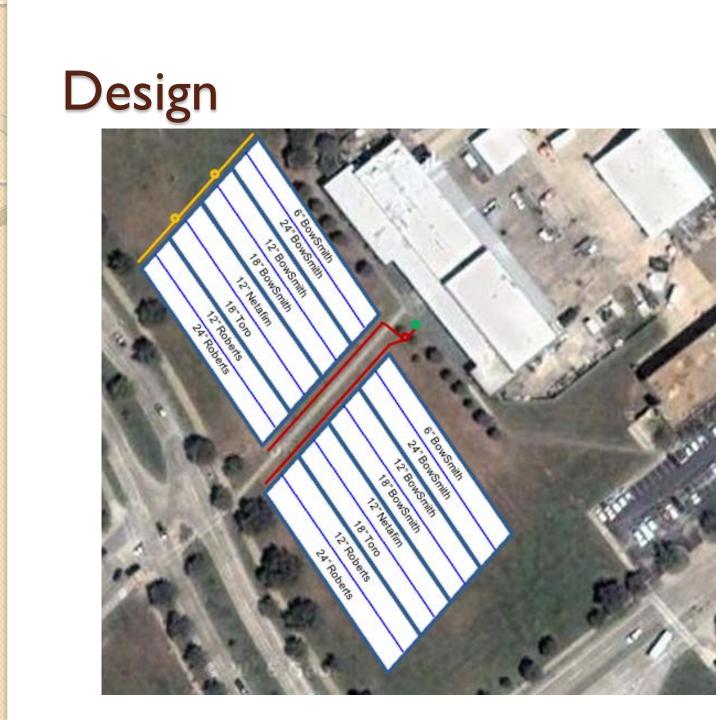
Drip, Drip, Drip Irrigation Pros/Cons

Texas Turfgrass Association Summer Conference, Galveston July 16, 2012

Guy Fipps, PhD, P.E. Professor and Extension Specialist – Irrigation, Water Management Biological and Agricultural Engineering Texas AgriLife Extension Service, Texas A&M System College Station, TX

What I've learned...

- It's easy to make erroneous assumptions about drip
- Designers, Installers and Managers don't always know what they are doing
- Determining the precipitation rate for irrigation scheduling is often a challenge


My Questions...

- In reality, is mineral clogging a likely problem when using municipal water?
- How deep should subsurface drip be burried?
- Can drip survive in urban landscapes with good performance?

Long-term Viability of Subsurface Drip Irrigation of Turfgrass

Location:

Texas A&M University Campus, College Station

Installation Completed, Summer 2009

Product Installation

- 4 Methods Utilized
 - Mini-Creeper
 - Tractor w/Single Plow
 - Tractor w/Double Plow
 - Hand Installation

Tractor w/Single Plow

Used for Installing Tubing Products

• Used for Installing Drip Tape

Hand Installation

Installation Comparison

Method	Mini-Creeper	Single Plow	Double Plow	Hand-Manual	
Ease of Use	Challenging	Simple	Simple	Challenging	
Ability to Install Straight Lines	Challenging	Simple	Simple	Challenging	
Ground Disturbance	Major	Minor Minor		Major	
Depth Control	Challenging	Simple	Simple	Challenging	
Width Control			Simple	Challenging	

12" Tubing Product

18" Tubing Product

12" Tape Product (AG)

24" Tape Product (AG)

6" Tape Product

24" Tape Product

2009-10 Results – Normal to Wet Years

Does not matter what spacing you use

2011 Results – Dry Year (Drought Conditions)

Streaking occurred in spacings greater than 12 inches under a "conservation" level of irrigation

Problems

Large Pressure Variations on Campus

Spikes up to 90 PSI

2010 Problems – Wet Year June/July: ETo= 11.63", Rain = 9.12"

2011

- Ground Shifting tearing product and breaking pipes/fittings
- No Clogging problems...yet

2011 Problems

2011 Performance

Continue to Monitor Pressures

2012 starting to see some pressure increases

	Pressure Readings (PSI) Per Plot During Study										
		Treatments-Plots									
	Date	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2			
	Jun-08	10	10	20	12	NA	NA	NA			
	Mar-09	10	10	25	12	10	10	25			
	Jun-10	12	12	25	12	12	12	25			
	Aug-11	12	12	25	12	12	12	25			
What if	Jul-12 these are correct??	11	16	15	9	12	15	6			

Summary: Problems

- Incorrect pipe gluing
- Incorrect drip fitting installation
- High pressure (non regulated)
- Delicate drip products
- Over saturated soils (irrigation + too much rainfall)
- No winterization, winter soil compaction

Summary: Lessons Learned

- Be sure your workers know what they are doing
- Coordinate irrigation with ground crews
- Don't forget to irrigate during the winter to keep trip lines open

DRIP IRRIGATION WORKSHOP

State Irrigation Regulations

- §344.62.Minimum Design and Installation Requirements.
 - "New irrigation systems shall not utilize aboveground spray emission devices in landscapes that are less than 48 inches not including the impervious surfaces in either length or width and which contain impervious pedestrian or vehicular traffic surfaces along two or more perimeters. "

48 Inch Rule, 5ft Rule

Example: the landscape between roads and sidewalks

Types of Drip Products

□ Three Main types of Drip:

- Таре
- Tubing with Embedded Emitters
- Poly pipe with emitter inserts

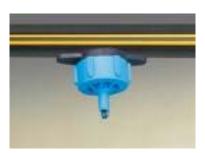
Drip Products – Drip Tape

Thin Wall Flat Drip Tape

- Contains embedded emitters
- Operates Under Low Pressure Conditions
- Popular in vegetable production

Drip Products – Drip Tubing With Embedded Emitters

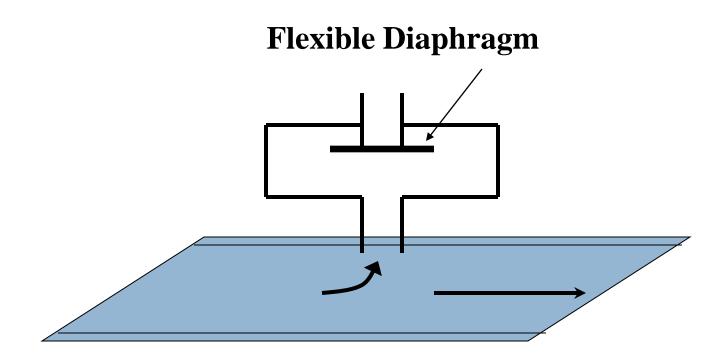
- Durable Thick Wall Tubing
- Usually contain pressure compensating embedded emitters
- Can operate under higher pressures



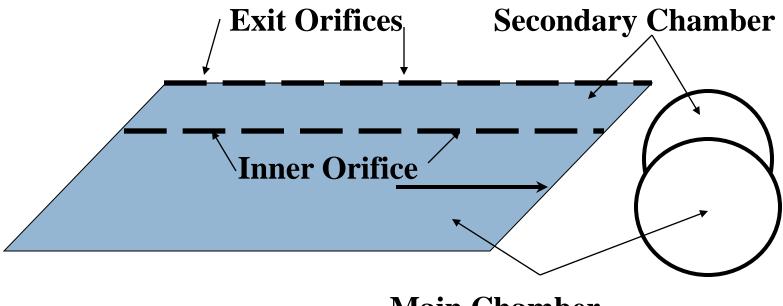
Drip Products – Drip Tubing with Inserted Emitters

- Uses hard hose PE tubing
- Allows for precision application of water
- Flexible Precipitation Rates, based on emitter
- Used for Shrubs and Trees

On Line Emitters


In-Line Emitter

Terminology (cont.)


- Pressure compensating emitters" flow remains nearly constant with varying inlet pressures
- Disc or rubber diaphragm located inside the emitter closes slightly as pressure increases
 ... reducing the cross sectional area, thus reducing flow

Pressure Compensating Emitter

Terminology (cont.)

- Self-flushing" water travels through the emitter at high velocity during start-up to remove debri
- Should not be regarded as a substitute for a filtration device
- Newer designs have flexible emitters that self-flush when plugged

Main Chamber

Twin - Chamber Tubing

- Used to catch plastic and sediment in the irrigation water
- Prevent clogging of emitters and valves.

- Screen filters are used for drip systems connected to municipal water sources and other "clean" water sources
- Sand media filters or disc filters may be required for drip systems connected to surface water (rivers, lakes, ponds, etc.)

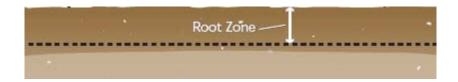
Operational Indicators

- Flags
- Misters
- Capped Spray Body
 Can be used a visual indicators that a drip system is operating

Advantages

Low Evaporation Loss

- Water is being applied at the soil surface, not in the air
- No wind drift loss
- Low runoff potential



Potential for precise soil moisture control Apply water directly to the soil and/or root zone

Requires less water pressure

Advantages (cont.)

- Smaller pipe size requirements
- Reduced weed growth when used with a mulch
- Reduced liability due to water on hardscapes
- Improved performance for plants on steep slopes

Benefits of Drip

- Allows for areas to be irrigated more efficiently that couldn't before
 - Slopes
 - Thin areas
- Low flow rate allows for larger areas to be irrigated at the same time.
- Ability to irrigate when the site may be in use

Disadvantages

Requires constant monitoring and maintenance

- May be cost prohibitive for large landscape areas (I.e., turfgrass)
- Applies a limited supply of water into the root zone
 - May require long runtimes

Disadvantages (cont.)

- Requires filtration and pressure regulation
- Surface tape and tubing are more susceptible to pests and vandalism
 - Rodents and Gophers like to chew on buried products
- Subsurface installations may reduce customer confidence
 - Typically cant see it operating, owners want to see what they paid for

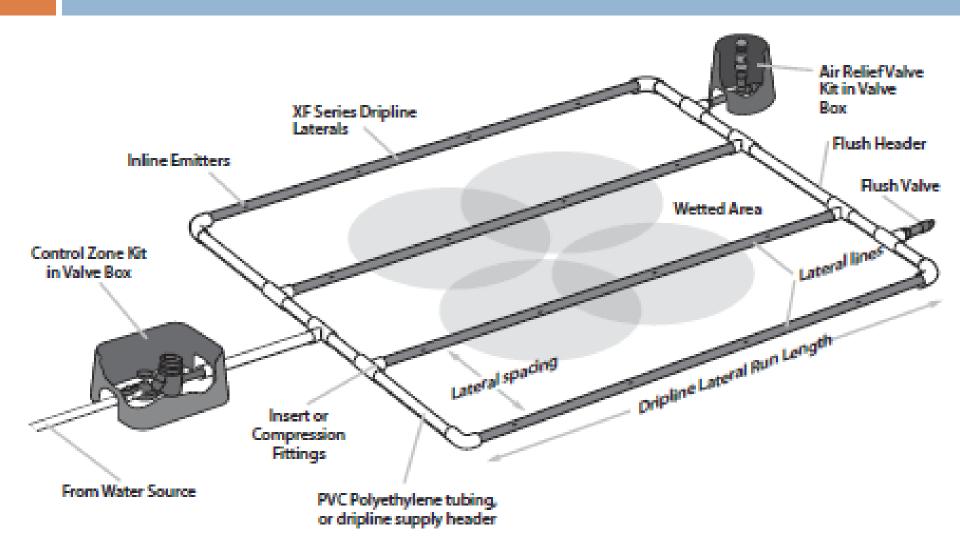
Chemigation

Acid Injection

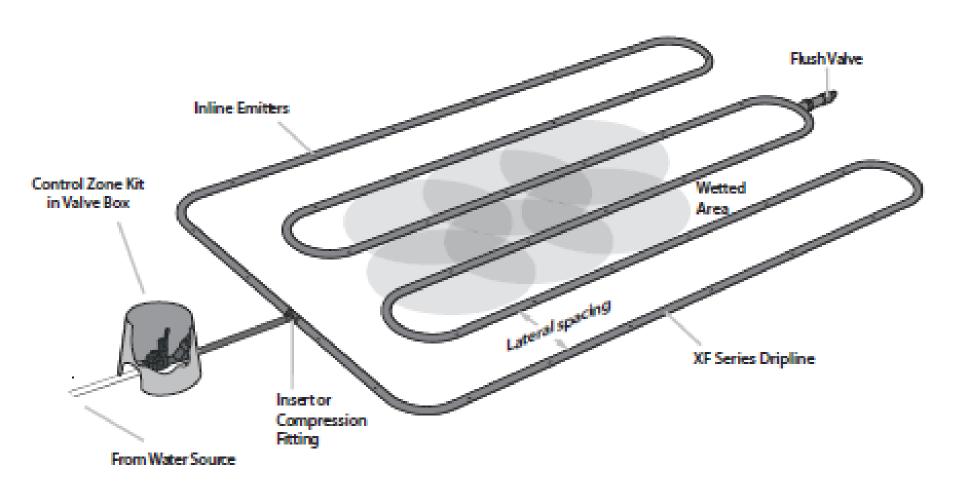
- Acid is injected to control mineral clogging of emitters
- □ Water with a high pH (>7.5) or

"moderate" to "hard water" (>60 ppm Ca) more likely to cause problems

Acid Injection


- □ 98% sulfuric acid is commonly used in drip irrigation
- Citric acid or vinegar can be used in organic farming
- Titration can be used to determine concentration of acid need
- (adding acid to a sample of the water to see how much is required to lower pH)

Acid Injection


- Experimentation is used in absence of titration
- Acid is injected until pH is lowered to 6.5 (measured at end of drip line)
- Higher concentrations are added if needed, lowering pH to as low as ~4
- Acid is corrosive inject downsteam of filter if made of metal

Manifold - End Feed Layout

"Quick" Layout

Designing Drip Irrigation Systems

The 7 Step Approach

Calculate Peak Water Requirement

What are we irrigating?

Calculating Plant Water Requirements

- \square WR = ETo x Kc
 - Where:
 - ETo = Evapotranspiration, Peak Month
 - Kc = Plant Coefficient
 - WR = Plant Water Requirement

Evapotranspiration Sources

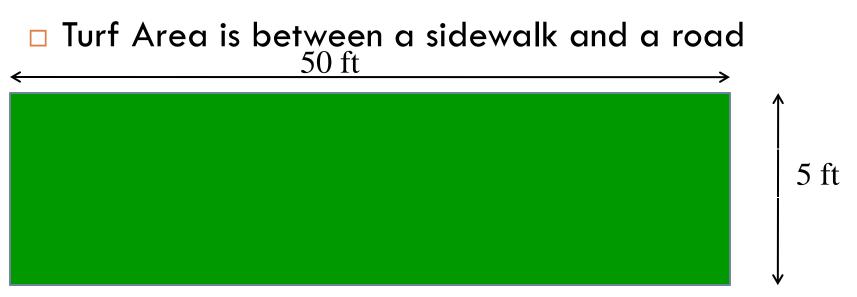
TexasET Network

<u>http://TexasET.tamu.edu</u>

- 34 Weather Stations in Texas
- Contains historical data for 19 Cities in Texas
- Online Calculators to determine irrigation runtimes
- Can Sign Up or email irrigation recommendations

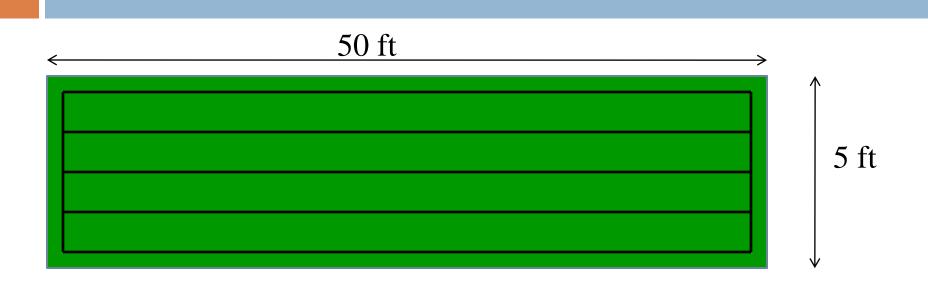
Simplified Method

Plant Type	Typical Peak Daily Water Requirement (Texas)			
Warm Season Turf	.17 inches			
Cool Season Turf	.23 inches			
Annual Flowers	.23 inches			
Perennial Flowers, Groundcovers, Tender Woody Shrubs & Vines	.15 inches			
Tough Woody Shrubs, Vines, Trees (non- fruit bearing)	.10 inches			


Choose a Product

Example Problem: Step 2

For Example Purposes lets use Rainbird Drip Product 12" Spacing, .6 GPH Flow


	XF Dripline Maximum Lateral Lengths (Feet)						
	12″ Spacing		18″ Spacing		24" Spacing		
Inlet Pressure	Nominal Flow (GPH)		Nominal Flow (GPH)		Nominal Flow (GPH)		
psi	0.6	0.9	0.6	0.9	0.6	0.9	
15	255	194	357	273	448	343	
20	291	220	408	313	514	394	
30	350	266	494	378	622	478	
40	396	302	560	428	705	541	
50	434	333	614	470	775	594	

Step 3: Calculating the Amount of Product

- Product can be installed either in a "snaked" pattern or in a manifold
- Manifold systems are preferred, creates a looped system

Step 3: Product Layout

- Using a 12" product.....come 6" off the edge
 4" By State Rule Minimum
- Total Product = 5 lines x 49ft + 2 lines x 4ft
- Total Product = 253 ft

Step 4: Calculate Total Flow

XF-SDI Dripline Flow (per 100 feet)								
Emitter Spacing	0.6 GPH	Emitter	0.9 GPI	l Emitter				
12″	61.0 GPH	1.02 GPM	92.0 GPH	1.53 GPM				
18″	41.0 GPH	0.68 GPM	61.0 GPH	1.02 GPM				
24″	31.0 GPH	0.51 GPM	46.0 GPH	0.77 GPM				

- 253ft x61 GPH/100ft = 154.33 GPH or
- □ 253ft x 1.02 GPM/100ft = 2.58 GPM

Step 6: Precipitation Rate

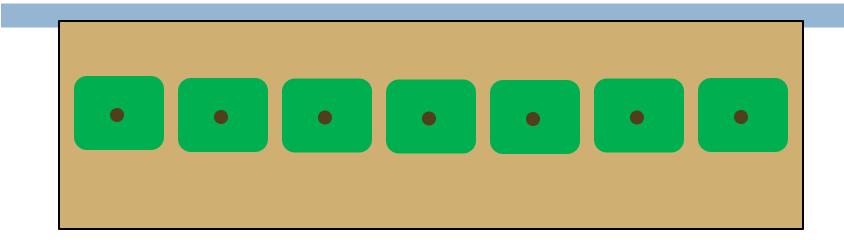
$PR = \underline{96.25 \times GPM}$

Α

PR – Station Precipitation Rate, in/hr

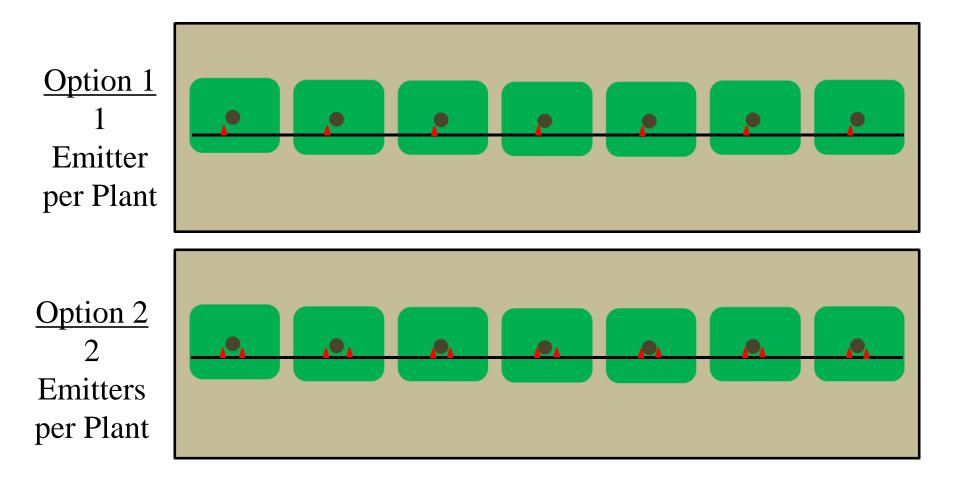
96.25 – Constant Converts GPM to inches per hour

GPM – Total Flow Rate through the station

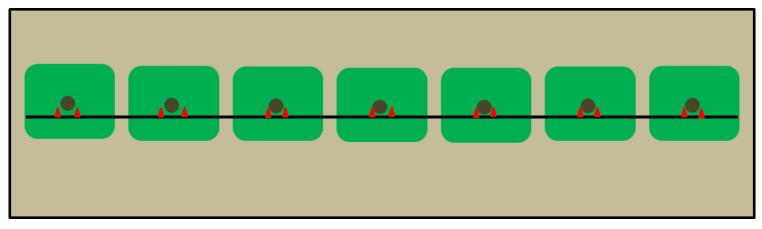

A – Area of Coverage, ft²

Example Problem

$PR = 96.25 \times GPM$ Area \Box GPM = Total Flow = 2.58 GPM \Box Area = Length x Width = 50ft x 5 ft = 250 ft² $PR = 96.25 \times 2.58GPM$ 250 ft² PR = .99 inches / hr

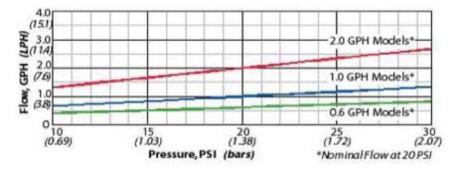

Designing Drip For Shrubs Using Online Emitters

- Using Online emitters for shrubs allows for customization of the drip system to match the layout and spacing of the shrubs
- Always best to use professional judgment on what size emitter (flow) and the number of emitters per shrub plant (typically 1 or 2)



□ Step 3: How many emitters are needed?

□ Step 4: What is the total flow?


 8 Plant x 2 Emitters per Plant = 16 Emitters
 16 Emitters x 1 GPH per emitter = 16 GPH or .27 GPM

Design Specs: Bowsmith Emitter

NonStop Drip Emitters

Nominal Performance

All NonStop Drip Emitters nominal flow rates at 20 PSI (1.38 bars)

Emitter Nominal Flow	Pressure (PSI)					
	10	15	20	25	30	
0.6	0.4	0.5	0.6	0.7	0.8	
1.0	0.7	0.8	1.0	1.2	1.3	
2.0	1.3	1.7	2.0	2.3	2.7	

Emitter flows in GPH, nominal at 20 PSI

Notes:

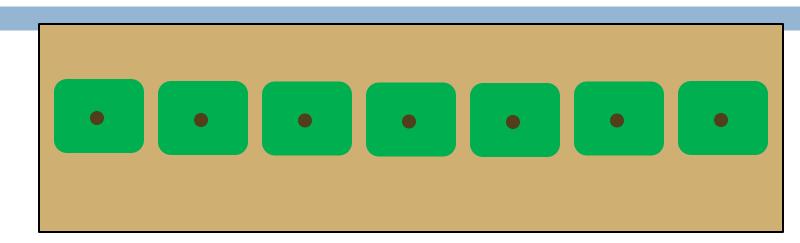
Manufacturer s variation, Cv: <= 0.05 30-mesh filtration and 15 PSI emitter operating pressure are the recommended minimums for a NonStop emitter system.

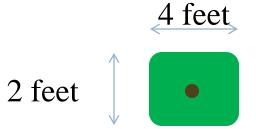
Single barb outlet. 0.250" and 0.175" barbs on opposite ends; either can be used as inlet.

- SB-06 0.6 GPH (2.3 LPH) (Green Insert)*
- SB-10 1.0 GPH (3.8 LPH) (Blue Insert)*
- SB-20 2.0 GPH (7.6 LPH) (Red Insert)*

*Nominal flow at 20 PSI (1.38 bars)

"SB" Series

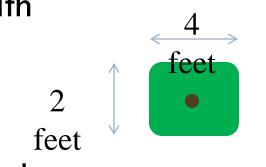



Step 6: What is the Precipitation Rate

$$Precip.Rate = \frac{96.25 \ x \ Total \ Flow \ (GPM)}{Area \ (ft^2)}$$

Total Flow = .27 GPM Area = ???

Calculating Drip Area: Shrubs


8 Small Shrubs

Area = Length x Width

or $Area = 3.14 \text{ x Radius}^2$

Calculating Drip Area: Shrubs

Using Area = Length x Width

 $4ft \times 2ft = 8ft^2 per plant$

Total Area = 8 $ft^2 \times 8$ plants = 64 ft^2

Step 6: What is the Precipitation Rate

$$Precip.Rate = \frac{96.25 \ x \ Total \ Flow \ (GPM)}{Area \ (ft^2)}$$

Total Flow = .27 GPM Area = 64 ft^2

Calculating Precipitation Rate

$$Precip.Rate = \frac{96.25 \ x \ .27 GPM}{64 \ ft^2}$$

Precipitation Rate = 0.41 Inches per Hour

□ Step 7: Will it work?

Can Precip. Rate meet peak demand (.15 Inches)?

$$Runtime = \frac{Peak \ Demand}{Precip.Rate} = \frac{.15 \ inches}{.41 \frac{in}{hr}}$$

Runtime = .37 hours or 22 minutes

Common Reasons for Drip Failure

Drip Mistakes

□ Failure to calculate drip precipitation rates

- Irrigate too much
 - Often assume really long runtimes are needed because it is drip
- Don't irrigate enough

